

EXPOSURE ASSESSMENT OF THE ELECTRIC AND MAGNETIC FIELDS OF ENERGY SAVING BULBS

G. Decat, G. Meynen, P. Van Tichelen VITO - Boeretang 200 – BE-2400 - Mol – Belgium gilbert.decat@vito.be

INTRODUCTION

Energy saving bulbs (ESB) are recommended in national energy saving programs. However, recently it was suggested that the bulbs generate EMF's which are hazardous for exposed individuals (Criirem, 2007).

METHOD

In order to verify these allegations we measured the waveform, the harmonic content, the electric and magnetic field of 8 different types of energy saving bulbs at different distances using a halogen and an incandescent lamp as control lamps. The measurements were performed by means of the most adequate measurement equipment.

RESULTS

The next two figures show the waveform and the harmonic content of a 11 W ESB.

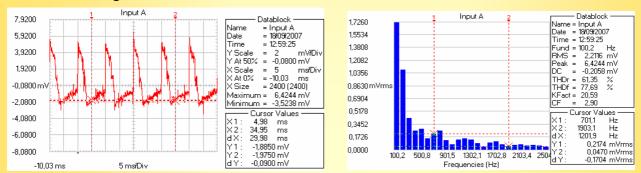


 Table 1: E-field and result of the summation formula for the harmonics of the ESBs and control lamps at different frequencies

	Energy saving bulbs (CFLi)							Control lamps	
	1	2	3	4	5	6	7	8	9
f(Hz) E(V/m)	50 1322	50 1475	50 1079	50 1435	50 1895	50 815	50 1640	50 290	50 318
f(Hz) E(V/m)	100 129	100 172	100 102	100 91	100 631	100 346	100 16	100 13	100 27
f(Hz) E(V/m)	150 63	150 116	150 23	150 82	200 12	200 51	150 42	150 2	150 10
f(Hz) E(V/m)	27000 396	30000 440	26000 382	43000 288	42000 410	1MHz	E_i	10 MH z	$\frac{Ei}{2} \leq 1$
f(Hz) E(V/m)	85000 21	90000 20	80000 16	87000 15	83009 12	<i>i</i> =1	$E_{L,i}$	i > 1MH	
Σ	0.42	0.49	0.33	0.42	0.68	0.33	0.36	0.06	0.08

CONCLUSION

The results of the summation formula (Σ) in the table show that the E-field of every energy saving bulb is in every case smaller than 1. Hence the field strength is in compliance with the ICNIRP (1998) reference level for multiple frequencies.